DlgsILENT
PowerFactory

Advanced Tutorial

Relay Modelling
Contents

1 Introduction 1

2 Relay Modelling 1

3 Introduction to a relay models 1
 3.1 Creating a simple overcurrent relay 50 1
 3.2 Defining Relay Frame .. 2
 3.3 Create Relay Type .. 7
 3.4 Testing ... 9
 3.5 Expanding OC Relay .. 11
 3.5.1 Changing Relay Frame 12
 3.5.2 Changing Relay Type .. 14
 3.5.3 Testing new features .. 15

4 Modelling of circuit breaker 17

5 Communication between relays 25
 5.1 Testing the new connecting relay 28

6 Understanding distance relay modelling in PowerFactory 30
 6.1 Starting Block ... 31
 6.2 Polarizing Block .. 35
 6.3 Directional Block ... 36
 6.4 Polygonal and Logic Block 37
1 Introduction

This tutorial demonstrates the modelling and editing of relay protective devices. The tutorial has been designed for the user who has already used, and is familiar with the basic functions and structure of PowerFactory.

Network models have been prepared for use. The tutorial comes with two PowerFactory database (.pfd) files, that will be used for this tutorial.

2 Relay Modelling

There are two types of relays provided by DlgSILENT: generic and manufacturer specific. A list of all available relays and models can be downloaded from our download area.

Each relay model in PowerFactory is made out of different blocks, where each block performs specific function of the relay. Number of blocks implemented in a relay model depends on the relay complexity. But common for all relays is that they always contain measurement units (current and/or voltage transformers), measurement blocks and logic block.

In case that relay needs information on current in the system (overcurrent, differential, distance relays) current transformer has to be build in relay model. In case that relay needs information on voltage (directional, distance, overvoltage, undervoltage relays) we will need to provide the model additionally with voltage transformer. Measurement block is using CT and VT to transform the measured values into discrete signals and finally logic block is responsible for sending the trip signal to the switching device.

For each relay type, a corresponding technical reference document is available. The technical references contain detailed descriptions on the blocks, their signals and functionality.

3 Introduction to a relay models

Our goal here is to get better overview over relay functionalities, there blocks and signals. Therefore we will create a simple relay from scratch. In the first step an simple overcurrent relay will be created and later this relay will be expend for additional overvoltage and undervoltage features.

3.1 Creating a simple overcurrent relay 50

You will learn how to create a simple overcurrent relay with two instantaneous overcurrent blocks (i.e. ANSI standard device number 50). This means for this task we will need:

- one current transformer block (CT),
- one measurement block for reading the current values,
- two overcurrent blocks for processing the measured current,
- one logic block that will send the trip signal to the circuit breaker in case of a fault.

If you are creating a new relay from scratch you will always have to consider following steps:
Introduction to a relay models

- Define all slots and their connections. In our case we need 5 slots. The number of slots depends on the complexity of the relay (e.g. for modern numerical distance relays there can be over 100 slots!)

- Define the relay type and refer it to the created frame. The relay type has to contain all block types for each slot. The block type contains important type information such as current ratios, time dial setting ranges, etc.

- Use and test the relay to see how your relay reacts.

3.2 Defining Relay Frame

- Import and activate the project called RelayModelling.pfd.

- Start by inserting a new page in the graphic board. For this select the Insert New Graphic option from the local graphic window icon bar.

- In the popup window select the option Block/Frame Diagram.

- Place 5 slots on the empty Frame Diagram by selecting the from the Draw toolbox. Each slot will represent one of the blocks that our relay will contain.

- Next step is to select type and input/output signals of the slots.
 - **First Slot** name it Ct. This slot will represent the used current transformer. For PowerFactory to know that this will be CT write StaCt* under Class Name option inside of the slot. The next important part is to define the input and output signals. For the Ct-block we do not need any input signals so this field will stay empty. For the output signals write I2r_A;I2i_A,I2r_B;I2i_B,I2r_C;I2i_C. This stands for real and imaginary parts of the CT's secondary phase currents. The list of all possible input and output signals are available in the technical reference for the current transformer document (TechRef_Ct). We can use this list to specify the signals we need for our relays.
3 Introduction to a relay models

<table>
<thead>
<tr>
<th>Output Signal</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_d_A</td>
<td>Phase A secondary side current real part</td>
<td>Sec Amps</td>
</tr>
<tr>
<td>I_d_B</td>
<td>Phase B secondary side current real part</td>
<td>Sec Amps</td>
</tr>
<tr>
<td>I_d_C</td>
<td>Phase C secondary side current real part</td>
<td>Sec Amps</td>
</tr>
<tr>
<td>I_d_C</td>
<td>Phase C secondary side current imaginary part</td>
<td>Sec Amps</td>
</tr>
<tr>
<td>10xI_d</td>
<td>Zero sequence secondary side current real part (calculated internally)</td>
<td>Sec Amps</td>
</tr>
<tr>
<td>10xI_d</td>
<td>Zero sequence secondary side current imaginary part (calculated internally)</td>
<td>Sec Amps</td>
</tr>
</tbody>
</table>

Figure 3.2: List of all output signals that CT can have

Second Slot name it Measure. Input of this block should be the output of Ct block. In technical documentation for this block you will find the name of input signals for real/imaginary part of the phase input current (\(wI_{rA}, wI_{iA}, wI_{rB}, wI_{iB}, wI_{rC}, wI_{iC}\)). This blocks provides RMS value of the phase current as output that will be send to be compared with the pick up current in 50/51 block (\(I_{A}, I_{B}, I_{C}\)). Class Name is RelMeasure*.
Figure 3.4: List of input and output signals of the RelMeasure block

<table>
<thead>
<tr>
<th>Input Signal</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>wfr_X</td>
<td>Input Current phase X</td>
<td>Amps</td>
</tr>
<tr>
<td>Wur_X</td>
<td>Input Voltage phase X</td>
<td>Volt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Signal</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_X</td>
<td>Current phase X RMS value</td>
<td>Amps</td>
</tr>
<tr>
<td>I_r_X</td>
<td>Current phase X phasor real part</td>
<td>Amps</td>
</tr>
<tr>
<td>I_i_X</td>
<td>Current phase X phasor imaginary part</td>
<td>Amps</td>
</tr>
<tr>
<td>U_X</td>
<td>Voltage phase X RMS value</td>
<td>Volt</td>
</tr>
<tr>
<td>U_r_X</td>
<td>Voltage phase X phasor real part</td>
<td>Volt</td>
</tr>
<tr>
<td>U_i_X</td>
<td>Voltage phase X phasor imaginary part</td>
<td>Volt</td>
</tr>
</tbody>
</table>

Figure 3.5: RelMeasure block

- **Third Slot** will be our $I_>$, first instantaneous overcurrent block (50). It's type Relloc* is also predefined in PowerFactory. Write Relloc* under Class Name option. This block expects phase currents (Iabs_A;Iabs_B;Iabs_C) and provides us with two signals yout and y_s. For our task here is only yout tripping signal of interest.
Introduction to a relay models

Table 3.6: Input/Output of Relloc block

<table>
<thead>
<tr>
<th>Input Signal</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>La1s_A</td>
<td>Phase A input current</td>
<td>Sec Amos</td>
</tr>
<tr>
<td>La1s_B</td>
<td>Phase B input current</td>
<td>Sec Amos</td>
</tr>
<tr>
<td>La1s_C</td>
<td>Phase C input current</td>
<td>Sec Amos</td>
</tr>
<tr>
<td>iblock</td>
<td>Blocking signal</td>
<td></td>
</tr>
<tr>
<td>iblock_A</td>
<td>Phase A blocking signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>iblock_B</td>
<td>Phase B blocking signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>iblock_C</td>
<td>Phase C blocking signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>wfwd_A</td>
<td>Phase A forward current</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>wfwd_B</td>
<td>Phase B forward current</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>wfwd_C</td>
<td>Phase C forward current</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>wrev_A</td>
<td>Phase A reverse current</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>wrev_B</td>
<td>Phase B reverse current</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>wrev_C</td>
<td>Phase C reverse current</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>wstart_A</td>
<td>Phase A external starting signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>wstart_B</td>
<td>Phase B external starting signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>wstart_C</td>
<td>Phase C external starting signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Signal</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>yout</td>
<td>Trip signal (any phase)</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>yout_A</td>
<td>Phase A trip signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>yout_B</td>
<td>Phase B trip signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>yout_C</td>
<td>Phase C trip signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>yallout</td>
<td>All phases trip signal</td>
<td></td>
</tr>
<tr>
<td>y_s</td>
<td>Start signal (any phase)</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>y_A</td>
<td>Phase A start signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>y_B</td>
<td>Phase B start signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
<tr>
<td>y_C</td>
<td>Phase C start signal</td>
<td>Sec or 1/0 RMS/EMT simulation</td>
</tr>
</tbody>
</table>

Figure 3.6: Input/Output of Relloc block
3 Introduction to a relay models

![Image of RelMeasure block]

Figure 3.7: RelMeasure block

- **Fourth Slot** $I > >$. Class Name *Relloc* input and output are the same as for the $I >$.

- **Fifth Slot** Logic. The last block Logic takes the outputs from the $I >$ and $I > >$ slots and sends on the switching device signal to open if one of this two blocks sees current bigger than the pick up current.

<table>
<thead>
<tr>
<th>Block Name</th>
<th>Block Class Name</th>
<th>Input Signals</th>
<th>Output Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ct</td>
<td>StaCt</td>
<td>-</td>
<td>$I_{2r}A;I_{2i}A,I_{2r}B;I_{2i}B,I_{2r}C;I_{2i}C$</td>
</tr>
<tr>
<td>Measure</td>
<td>RelMeasure</td>
<td>wlr_A,wlr_B,wlr_C</td>
<td>$I_{A};I_{B};I_{C}$</td>
</tr>
<tr>
<td>$I >$</td>
<td>Relloc</td>
<td>labs_A;labs_B;labs_C</td>
<td>$yout$</td>
</tr>
<tr>
<td>$I > >$</td>
<td>Relloc</td>
<td>labs_A;labs_B;labs_C</td>
<td>$yout$</td>
</tr>
<tr>
<td>Logic</td>
<td>RelLogdip</td>
<td>y1,y2</td>
<td>$yout$</td>
</tr>
</tbody>
</table>

Table 3.1: Summary of the slots and their options

You have maybe noticed that some of the signals are separated with comma “,” and some of them are separated with semicolon “;”. For example $I_{2r}A;I_{2i}A,I_{2r}B;I_{2i}B,I_{2r}C;I_{2i}C$ this will create three contacts on the slot each carrying two signals (first contact $I_{2r}A;I_{2i}A$, second $I_{2r}B;I_{2i}B$ and last third contact carries two last signals $I_{2r}C;I_{2i}C$). On this way we are avoiding to have too much lines on our slot diagram.
3.3 Create Relay Type

Here we will define new Relay type that refers to the Relay frame we just created and we will be defining each relay block type closer.

- Create new object of the Type TypRelay inside of the Equipment Type Library Folder and name it “OCRelay”.

Figure 3.8: Relay Frame

- Connect plots as shown in the picture above. To connect slots use the Signal element from the Draw toolbox and select two contacts this signal is connecting.
3 Introduction to a relay models

- From the User Defined Models Folder (also inside of the Library Folder) cut the frame you created in previous sub-chapter and past it inside of the new Relay Type.

- Open the new Relay Type “OCRelay” and select the frame under Relay Definition option.

- Relay will automatically update showing all slots. Confirm with OK.

- New we will define for each slot one relay block type. To define new object inside of the “OCRelay” select OCRelay in Data Manager, press from the local icon bar and select the Special Type. The easiest way to select special type is by writing its name in selecting field.

Define:
3 Introduction to a relay models

- one block of the type **TypMeasure** - *Type: 3ph. Currents/Delta Voltages*
 Nominal Current: 1.5 A
 Nominal Voltage: 110 V

- two blocks of the type **TypIoc** - *Current Range*: 0.1-100; 0.01
 Time Setting Range: 0.1-100; 0.01

- one block of the type **TypLogdip** - Under Basic Data Page: *Input Signal*: y1,y2
 Tripping Signal: yout.
 Under Logic Page: *yout = y1.or.y2*

![Figure 3.11: Relay Logic Block](image1)

- Open the Relay type object once again and press Slot update.

![Figure 3.12: Relay Type](image2)

- If you would like to replace some of the blocks just right mouse button click on the block to be replaced and select *Reset Element/Type* option. Fill now emptied field with the type you would like to have here.

3.4 Testing

Let us now test our new created Overcurrent relay.
3 Introduction to a relay models

- Create the Relay on the Motor Cable. Refer to User Manual for how to create relay if needed.
- Create a Current Transformer 1000/1.
- Select 0.72 pu for pickup current and 2.5 sec for time settings in $I >$ block and 8.1 pu and 0 sec in $I >>$ Block.
- Create Time-Overcurrent Plot and add the Motor characteristic on the plot as well.
- Run LoadFlow calculation. Does the relay trip? Why not?
- Run the 3 phase max short circuit on the end of the protected cable. Does the relay trip?

Let us have a look inside of the relay to see how this short circuit current is processed in the relay itself.

- Open the Relay in the Data Manager.

![Figure 3.13: Relay in Data Manager](image)

- Let us have a closer look at the signals of the Measure Block.
 - For this select the Measure block and activate the Detail Mode by selecting the icon from the local icon bar.
 - Switch to the Flexible Data Page and open Variable selection window.
 - Select Signals from the drop down menu under option Variable Set in the new window. Choose to see values of all input and output signals.
 - How high are the I_A, I_B, I_C Signals? Take the CT into account and check if the Relay is seeing the correct value of the current.
3. Introduction to a relay models

Let us now have a closer look at the $I >$ and $I >>$ blocks. First deactivate Detail Mode and repeat the steps from above for $I >$. Select the $I_{abs}^A, I_{abs}^B, I_{abs}^C$ and y_{out} from the Signals and pickup current I_{pset} from the Calculation Parameter variable set.

Are the values of this signals as expected?

And finally let us look at the logic. Which signal is responsible for tripping the relay.

3.5 Expanding OC Relay

Here we will expand our new created relay model by implementing new protection criteria. This simple relay will contain two instantaneous over-current blocks, one over-voltage and one under-voltage block. You will repeat same steps from above and add new blocks in the frame, add new block types in the relay model, ... For this task one $U > (59)$ and one $U < (27)$ block will be
added. We will need not just current transformer (CT) but also an voltage transformer (VT). Measurement block and also logic have to be adopted to the new changes.

3.5.1 Changing Relay Frame

- Place 3 new slots on the Frame Diagram by selecting the \(\square \) from the Draw toolbox. Each of them will represent a new block.
- Next step is to select type and input/output signals of the new slots.
- **First new Slot** should be named Vt. This slot will represent used voltage transformer. For **PowerFactory** to know that this slot represents VT write **StaVt** under option **ClassName** inside of the slot. For Vt-block as also for the Ct no input signals are needed, so this field will stay empty. For output signals following signals are to be selected (\(U_{2r,A}, U_{2i,A}, U_{2r,-B}, U_{2r,B}, U_{2r,C}, U_{2i,C} \)).

![Figure 3.16: Ct and Vt Slots](image)

- **Next two new Slots** \(U > \) and \(U < \). Both slots are having equal types **RelUlim** and are expecting the same signals, voltage for the phase a,b and c. Definition of how this signals are treated is defined later in block type.
• Make corresponding changes in Measurement block frame and in Logic block frame.
 – Measurement should be able to receive information from VT and to provide output for $U >$ and $U <$.
 – Logic should support additional two input signals.

<table>
<thead>
<tr>
<th>Block Name</th>
<th>Class Name</th>
<th>Input Signals</th>
<th>Output Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ct</td>
<td>StaCt</td>
<td></td>
<td>$I_2r;I_2i$</td>
</tr>
<tr>
<td>Vt</td>
<td>StaVt</td>
<td></td>
<td>$U_2r;U_2i$</td>
</tr>
<tr>
<td>Measure</td>
<td>RelMeasure</td>
<td>$wlr_A,wli_A,wlr_B,wli_B,wlr_C,wli_C,wUr_A,wUr_B,wUi_A,wUi_B,wUr_C,wUi_C$</td>
<td>y_1,y_2,y_3,y_4</td>
</tr>
<tr>
<td>$I >$</td>
<td>Relloc</td>
<td>$Iabs_A,Iabs_B,Iabs_C$</td>
<td>$Iabs_A,Iabs_B,Iabs_C$</td>
</tr>
<tr>
<td>$I >>$</td>
<td>Relloc</td>
<td>$Iabs_A,Iabs_B,Iabs_C$</td>
<td>$Iabs_A,Iabs_B,Iabs_C$</td>
</tr>
<tr>
<td>$U >$</td>
<td>RelUlim</td>
<td>$wUabs_A,wUabs_B,wUabs_C$</td>
<td>$yout$</td>
</tr>
<tr>
<td>$U <$</td>
<td>RelUlim</td>
<td>$wUabs_A,wUabs_B,wUabs_C$</td>
<td>$yout$</td>
</tr>
<tr>
<td>Logic</td>
<td>RelLogdip</td>
<td>$y1,y2,y3,y4$</td>
<td>$yout$</td>
</tr>
</tbody>
</table>

Table 3.2: Summary of the slots and their options
3 Introduction to a relay models

Figure 3.18: Relay Frame

- Connect plots as shown in the picture above. To connect slots use the Signal element from the Draw toolbox and select two contacts this signal is connecting.

3.5.2 Changing Relay Type

- Open the Relay type we created “OCRelay”.
- Press Slot Update button, new blocks will appear. Elements will be placed corresponding to there Sequence number written inside of the slot. If needed adjust the sequence number.
- Now for each new slot one relay block type will be defined and old blocks will be adjusted if needed. To define new object inside of the “OCRelay” just select OCRElay in DataManager, press from the local icon bar and select the Special Type. The easiest way to select special type is by writing its name in selecting field. Define:
 - two blocks of the type TypUlim - Function: Undervoltage/Overvoltage
 Voltage: 0.5-1.5;0.1
 Time Delay:0.1-100;0.01
 Reset Ratio: 105%/95%
 - one block of the type TypLogdip - Under Basic Data Page: Input Signal: y1,y2,y3,y4
 Tripping Signal: yout.
 Unted Logic Page : yout = y1.or.y2.or.y3.or.y4
3 Introduction to a relay models

Figure 3.19: Relay Logic Block

• Open the Relay type object once again and press Slot update.

Figure 3.20: Relay Type

• If you would like to replace some of the blocks just right mouse button click on the block to be replaced and select *Reset Element/Type* option. Fill now emptied field with the type you would like to have here.

3.5.3 Testing new features

• Open the Relay build on the Motor Cable and press *Slot Update*.
• Create new VT 415/110 V.
• Set $U >$ to trip in 1 sec if voltage goes over 1.1 p.u and $U <$ to trip in 1 sec if voltage drops under 0.9 p.u.
• Change the Transformer type so that it supports tap positioning from ± 20. Execute the load flow calculation and change the tap position of the transformer so that voltage goes under 0.9 and over 1.1 p.u.
• Check how relay reacts.
3 Introduction to a relay models

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RelayModelling_Start.pdf</td>
<td>File used to do the exercise</td>
</tr>
<tr>
<td>RelayModelling_FinishedOCRelay.pdf</td>
<td>Solution of exercise</td>
</tr>
<tr>
<td>RelayModelling_FinishedOCRelayExtended.pdf</td>
<td>Solution of exercise</td>
</tr>
</tbody>
</table>
4 Modelling of circuit breaker

Our task here is to implement a ABB PR222DS Circuit Breaker. This can be done as the task described in chapter 3.1 but we will engage a different approach. We will use a similar relay model that exists and change it.

- For this import Siemens “Sentron” Circuit Breaker model in PowerFactory. You will find this model in our Relay Library under Siemens/Sentron-ETUxxB.
- Copy Sentron ETU76B Relay model into our Project under Equipment Type Library.
- Rename it to be ABB_PR222DS.
- Delete the Default relay from the contents of the relay type.
- Open the Frame graphic to see the internal connections of the relay slots. For this right mouse button click on the relay type → Show Graphic

![Frame of the ETU76B Circuit Breaker](image)

Figure 4.1: Frame of the ETU76B Circuit Breaker

- Get familiar with the relay frame. What is a difference between Measure block here and the one from the Overcurrent relay we created in previous chapter? (Additional 3I0 Signal that is separated and fed to block G RelToc)
- Following screen shots are made from ABB document DOC. N.º 1SDH000549R0001 - L7947 and represent the setting ranges for all available blocks. Our task is now to adjust the ETU76B to be our PR222DS
- First let us adjust In(A) nominal current values for this circuit breaker and write this values inside of the Measure.TypMeasure (In 100;150;250;300;400;600;800)
• From the picture below we can see that the current range for the Block L is from 0.4-1 with step of 0.02. Regarding time characteristic: this relay has 4 possibilities:

 – 3 sec 6ln
 – 6 sec 6ln
 – 9 sec 6ln
 – tmax sec 6ln (for all types except for T5 600A is tmax=18 sec)

• Let us make changes in L block of our relay.
Figure 4.4: Block L

- Block L in Siemens circuit breaker ETU76B has two I-t Characteristic i^2t and i^4t. For ABB PR222DS we will just need one i^2t. So delete the one we don’t need and adjust the l2td.

Figure 4.5: S Block

- On the similar way adopt the S Block.
I block is instantaneous so it is much easier to adjust.
Figure 4.8: Block G

Figure 4.9: Overview of Block settings form Technical catalogue 1SDC210015D0203 - Edition 2008
• Block G is a little bit complicated, that is why we will just define one I-t characteristic i^2t 3.15xIn for $t=0.1$ sec

![Image of L,S and I characteristic form Technical catalogue](attachment:image.png)

Figure 4.10: L,S and I characteristic form Technical catalogue 1SDC210015D0203 - Edition 2008
Now when the circuit breaker type is finished, insert one on the “Load Cable”. For circuit breakers in PowerFactory we need a CT with 1/1 A. Create the Overcurrent plot and check if the characteristic is as expected. If needed make corresponding changes.
Figure 4.12: Overcurrent plots in *PowerFactory*

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RelayModelling_Start.pfd</td>
<td>File used to do the exercise</td>
</tr>
</tbody>
</table>
5 Communication between relays

Here in this example we will have a look at the two distance relays build on the Feeder Cable. They are set so that the first zone covers 90% of the line length. This means that if the short circuit occurs on for example 95% of the line length one of the relays will trip in zone 1 and the other one in zone 2. On this way cable is exposed for the longer time against short circuit current. Our task here is to define communication so that one relay send the information if it sees fault in the zone 1 to speed up the second relay if this sees the fault in the zone 2.

- Switch the external grid in service just to have feeding from both sides of the line in case of short circuit on the cable.
- Execute the short circuit on the 50% of the line. How do relays react? Repeat the calculation on the 5 and 95%.
- Define a path starting on the Intake/Incomer busbar and ending on the Industrial/B1 busbar. Path will contain only this one cable.
 - *Select all elements that should be in path* → right mouse button click → Path/New. For more information on path please refer to User Manual.
- Create Time-Distance plot for the path.
 - *Select one element of the path* → right mouse button click → Path/Time-Distance Diagram. For more information on path please refer to User Manual.
- Execute the short circuit sweep on the path.
 - *Double click on the diagram* → Select Method to be “Short Circuit Sweep” → Press “Shc-Calculation . . . and than Execute”. For more information on path please refer to UserManual.
- Communication between two or more relays in PowerFactory will always be done through another third relay, which task is only to connect.
- Here we will also start by inserting a new page in the graphic board. For this select the Insert New Graphic option from the local graphic window icon bar.
- In the new open window select the option Block/Frame Diagram.
- Place 2 slots on the empty Frame Diagram by selecting the from the Draw toolbox. Each of them will represent one of two relays we are connecting.
- Next step is to select type and input/output signals of the slots.

<table>
<thead>
<tr>
<th>Name</th>
<th>Class Name</th>
<th>Input Signals</th>
<th>Output Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>ElmRelay</td>
<td>yIn</td>
<td>yExt</td>
</tr>
<tr>
<td>R2</td>
<td>ElmRelay</td>
<td>yIn</td>
<td>yExt</td>
</tr>
</tbody>
</table>

![Figure 5.1: New communication Relay](image-url)
• Next step is to define the Relay Type that will refer to this frame.
 – In Equipment Type Library define new object of the type TypRelay

 ![Figure 5.2: New Type object](image)

 – Copy the frame from the User Defined Models folder into TypRelay object and link our relay type object with it under option Relay Definition

• New relay is ready so we just have to make small changes of the old used distance relay type. We have to prepare it so that it will be able to give and receive signals of interest. What we want is one distance relay to send information if it sees the fault in the zone 1 and to receive the same signal from the other relay. Received signal will be than sent to logic block and will be processed.

 – Open the frame graphic of the Distance relay. **Right mouse button click on the RelType element → Show Graphic**

 – Deactivate the Freeze Mode if needed, by selecting from local icon bar.

 – Define the new input signal that will be led to logic block by just simple connecting left edge of the Frame with the logic block via signal element. Before this is possible you will have to define the input contact on the logic block.
 • Open the logic slot and define new input signal. Here is very important that this name matches name of the input signal from the connecting Relay (in our case yIn).

 – Define also the output signal of the relay that should be used as input of the second relay. In our case signal if the fault is in the first zone.
 • For this just connect output of the Zone 1 block with the right edge of the relay frame. Press rebuild button form the local icon bar.
5 Communication between relays

• Double click on this signal line. In the new open window you will see that this signal connects output signal yout of the Ph-Ph Polygonal 1 Delay block with the output signal $yZ1$ of the whole relay $F21$ Polygonal. And this is fix- not changeable.

![Output signal windows](image)

Figure 5.3: Output signal windows

• This is why we will also have to adopt the Connection Relay by changing the output of the two blocks available here. R1 and R2 from yExt to yZ1

![New Connecting and changed Distance relay frames](image)

Figure 5.4: New Connecting and changed Distance relay frames

- Last thing we have to adjust is Logic block. We have to change the logic so that if
opposite relay sees the fault in zone 1 our relay trips instantaneously.

- Open the logic type block and adjust it.

![Logic Adjustment](image.png)

Figure 5.5: Logic adjustment

5.1 Testing the new connecting relay

- Build the new relay of the type we created above and select the two relays R1 and R2 that should be connected.
 - New relay will be filled with only one R1 relay. To remove one of them just right mouse button click on one of the relays → Remove ElementType
 - Select the R2 relay on the field R2. One way is by double clicking the empty field and selecting the relay R2. Other way is to open the cubical where the relay R2 is, to copy it and past it here inside the empty field.
5 Communication between relays

![Figure 5.6: New relay](image)

- To test this relay switch to the Time Distance diagram and run the short circuit sweep once again. Are there any changes?

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RelayModelling_Start.pfd</td>
<td>File used to do the exercise</td>
</tr>
<tr>
<td>RelayCommunication_Finish.pfd</td>
<td>Solution of exercise</td>
</tr>
</tbody>
</table>
6 Understanding distance relay modelling in PowerFactory

The objective of this exercise is to introduce directional protection models and blocks that one distance relay must contain in PowerFactory. We will concentrate here on 7SA6 Relay model from Siemens.

- Import and activate the project “RelayDistance_Start.pfd”
- Have a look at the relay model and identify all used relay blocks.
 - Open the Relay inside of the Data Manager
 - **Option 1**: Right mouse click on the relay itself → Edit and Browse Date . . .
 - **Option 2**: Open the relay → press CTRL and E on the keyboard
 - **Option 3**: Open Data Manager and navigate to Relay
 - Go with the right mouse taster on the relay and select Show Graphic from context menu.

![Figure 6.1: Show Graphic of the Relay model](image)

- Clock with the right mouse button on the new opened page and select Show Library Object

In distance relay 6 impedances for each fault-loop (L1-E;L2-E;L3-E;L1-L2;L2-L3;L3-L1) will always be calculated and compared with impedances set inside of the zones (Z1,Z1b,Z2,Z3,Z4,Z5). In case that starting block detects an fault this calculated impedance will be compared with the impedance setting of the zone. If the calculated impedance is smaller than the one set in the zone, this zone will see a fault and send this information to logic. In case that none of the active zones sees the fault than the back-up (directed or undirected) protection should react, if set so.

\[
Z_{Lx-E} = \frac{U_{Lx-E}}{I_{Lx}}
\]

\[
Z_{Lx1-Lx2} = \frac{U_{Lx1-Lx2}}{I_{Lx1} - I_{Lx2}}
\]

This is easy to be seen on the R-X Diagram, where each calculated value in PowerFactory is represented by one red arrow.
6 Understanding distance relay modelling in *PowerFactory*

- Run *Load Flow calculation*. Present the calculated values for line-ground voltage its magnitude and angle in the result box for terminals and current magnitude and angle for branch elements.

- Use the formulas above to recalculate the impedance that relay sees in load flow case. We are having symmetrical load flow so all impedances seen by the relay are being equal.

- Change to R-X Diagram and check if the *PowerFactory* results and the one you have calculated are the same. (R1=205,203exp(24,565))

- Execute the 2ph min Short circuit at 50% of the first line and have a look how the impedance at the R-X diagram changes. Also red arrows are appearing on the R-X diagram. Each arrow represents one of 6 impedances.

- Does the Relay trip and how fast?

6.1 Starting Block

One of the first blocks that information from current and voltage transformers has to be passed to is the **starting block**. This block is responsible for detecting fault and sending this information to various blocks for further investigation. The Starting block is getting the phase and zero sequence currents from the measurement block/blocks and its output signal is used to activate the directional block ("Dir-Z") and the zone blocks.

In many distance relays this block is also having undirectional backup protection function.

There are three types of this block in *PowerFactory*

- General starting block (**RelFdetect**).
- Siemens starting block (**RelFdetsie**).
- ABB starting block (**RelFdetabb**).
The general starting block implements the more common fault detection logics present in the distance relays (Overcurrent (phase and ground); Underimpedance as voltage restrained over-current; Underimpedance with impedance calculation).

The Siemens starting block implements the fault detection logic available in the AB 7SA5x and 7SA6xx relay family. Four different types of fault detection are available: the “Overcurrent \(I \geq \)”, the “Underimpedance \(U/I \)”, the “Impedance \(Z \)” and the “Underimpedance \(U/I/\phi \)” detection logic.

The ABB starting block implements the fault detection logic available in the ABB REL100, REL 316, REL 5xx relay family and REL670 relay. Two different types of fault detection are available: “Overcurrent” and “Impedance \(Z \)” (underimpedance) detection logic.

- Execute 2ph minimal short circuit at the busbar “SS1-1” once again and open the Relay R1 in Data Manager.
- Select Starting block and activate Detail Mode.

![Figure 6.3: Selecting Starting block](image)

- Change to Flexible Data page and print all available signals for this block in output window. Are input Signals of the starting block as expected?
- Investigate output signals. Does the relay trip and why?
 Two signals \(y_{\text{loop}} \)-fault loop, \(y_{\text{faulttype}} \)- fault type are containing integer values starting with 0. This values have following meaning:

 \[
 \text{FaultLoop} = \{\ \text{NONE}=0, \ L1E, \ L2E, \ L3E, \ L1L2, \ L2L3, \ L3L1, \ L1E,L2E, \ L2E,L3E, \ L3E,L1E, \ L1L2,L2L3, \ L2L3,L3L1, \ L3L1,L1L2, \ L1E,L1L2, \ L2E,L2L3, \ L3E,L3L1, \ L2E,L1L2, \ L3E,L2L3, \ L1E,L3L1, \ L1E,L2E,L1L2, \ L2E,L3E,L2L3, \ L3E,L1E,L3L1, \ L1E,L2E,L3E, \ L1L2,L2L3,L3L1, \ L1E,L2E,L3E,L1L2,L2L3,L3L1, \ LOOPNOTAVAILABLE \};
 \]

 \[
 \text{FaultType} = \{\ \text{NOFAULT}=0, \ ABCF, \ AE, \ BE, \ CE, \ AB, \ BC, \ CA, \ ABE, \ BCE, \ CAE \};
 \]

- Open the input window for the starting block. What type of starting is selected? How high is the pick-up current?
• Open the R-X Diagram for the relay R2. Does this relay trip? Why?

Over-current method can be used in networks with small line impedances and strong infeed. It can be applied at any distance relay if in the case of minimal short-circuit, the current seen by the relay is sufficient large.

• Activate “U/I Starting” Variation and run the 2ph minimum short circuit on the 20 % of the line “L-1-3” starting at the terminal i.

• Switch to R-X Diagram representing R1 relay. Does the relay trip?

• Even if one of the impedances (in this case Zl_B) is inside of the R-X diagram (Zone 3) that should lead to tripping of the relay (in 0.8 sec), this relay does not trip.

• Let us have a look inside of the relay:
 – Print the input signal values of the Logic block of this relay in output window. Are there any tripping signals sent to Logic block?
 – Have a look at the zone 3 block the one we would expect to trip. Show all input values of this block. Concentrate on the relevant signals coming from the Starting block. Does the Starting block recognize this fault?
 – Have a look at the input and output signals of the starting block. What was the problem? (Ikss=1,288sec.A ; Ipickup=1,5sec.A)

![Figure 6.4: Input signals from zone 3 block](image-url)
In case that we have a weak source, high earth current limiting impedance in the earthing of transformer or current splitting through parallel paths, short circuit current can drop under the overcurrent limit. In this case a different starting method then the overcurrent should be considered.

- One of the ways to solve the problem would be to decrease pick-up overcurrent $I_{ph} >>$ but here we are facing problem that nominal current of the cable is 1.2kA and 1.288kA is the 2ph min short circuit. That is why we are introducing U also as relevant parameter to be considered.

- Select Underimpedance U/I as type of starting and select
 \[I_{ph} >= 0.5 I_N; I_{ph} >= 2.5 I_N \]
 \[U(I >) = 70\% U_N; U(I >>) = 100\% U_N; \]
 \[\text{Prog.} U/I = \frac{LE_{U\text{phe}}/LL_{U\text{phph}}}{} \]

- Run the short circuit once again. Does the relay trip? Have a look inside of the Starting block signals. Why does the relay trip?

- Execute the 2ph minimum short circuit on the same line but on the 50% of the line length. Change to R-X diagram. How fast did the relay trip? Check the time settings for the starting block.

- Find out which block was responsible for this tripping (T6 signal; Directional Block with its directional back-up protection feature)
6 Understanding distance relay modelling in PowerFactory

6.2 Polarizing Block

Polarizing block is providing the distance protection zones the “polarized” current and voltage signals which will be used to evaluate the trip rules. It is getting as input the voltage and current signals and is providing as output:

- Operating currents
- Polarizing voltages
- Operating voltages

If set polarizing block calculates also the impedance values. It supports different representations of the earth fault compensation factor. This factor is usually used by the distance protection to allow the user inserting the same trip impedance values for the phase-phase faults and the phase-ground faults. This block is providing the signals to distance zones and to the directional block.

- Execute 1ph maximum short circuit on the 50% of the Line L-2-1 and switch to R-X diagram for the R1 relay. Are the red arrows correctly represented.
- Open two polarization blocks and adjust earth factors k0 and Angle according to the line parameters. Easiest way is to adjust this by clicking on the Assume k0 button. Also set the same line angel.
- Execute once again short circuit and have a look at R-X diagram. Any graphical changes on the R-X Diagram?
- Define a path starting on the SS2 busbar and ending on the SS1 busbar. Path will contain only one Line. Important not to forget to mark coupling between SS2-1 and SS2-0.
 - Select all elements that should be in path → right mouse button click → Path/New.
- Create Time-Distance plot for the path.
 - Select one element of the path → right mouse button click → Path/Time-Distance Diagram.
- Execute the 1ph maximum short circuit sweep on the path.
 - Double click on the diagram → Select Method to be “Short Circuit Sweep” → Press “Shc-Calculation . . . and than Execute”.
- Does the relay reacts as expected on the whole path?
- Execute the 2ph minimum short circuit sweep on the path just to check if phase to phase faults are recognised correctly.
- Execute the 1ph maximum short circuit on the 50 % of the line “L 2-1” and change to R-X diagram. Is this fault recognised as 1ph short circuit?
- Open the input window for the starting block and navigate to Earth Fault Detection page. How high are the $I_e >$ and $U_e,grd >$ settings for Earthed Networks?
- Open starting block in Data Manager and check the values for input signals I0 and U0.
- Open starting block once again and change the Earth Fault detection option inside of the Earth Fault Detection page from $U_e>$ and$I_e>$ to $U_e > or I_e >$.
- Repeat short circuit sweep. Any changes?
6 Understanding distance relay modelling in PowerFactory

6.3 Directional Block

Detection of current direction is quite important when it comes to two sides in-feed. The distance directional block (RelDisdir(TypDisdir class)) is mocking up the directional characteristic present inside the more common distance relays. It is also able to model exactly the directional elements of the Siemens and of the ABB relays. It gets as input signals the current and voltage values and calculate the impedance values. The directional evaluation is performed on the R-X diagram.

- Execute the 1ph minimum short circuit on 80% of the line “L-1-3” starting from terminal j and change to R-X diagram of the relay “R2”.
- Open the two Polarizing blocks and adjust the k0 factor and Angle and repeat short circuit calculation. Does the relay trip and how fast?
- Activate the Zone 3 and select its setting so that single phase short circuit from above is recognised and turned off in 0.8 sec.
- Change the type of used directional block according to the figure 6.6.

![Figure 6.6: Changes of the directional block](image)

- Move to R-X diagram and open the input window for the directional block. Make changes of both Directional Angle phi and Directional Angle alpha and pay attention how R-X diagram changes.
- Set Directional Angle phi to -40 deg and run the same short circuit. Does the relay trip? Why?
- Set this angles as they were on beginning phi=30 deg and alpha=22 deg.
- Execute single phase ground maximum fault on the 65% of the same line.
- How fast does the relay trip? Set the Tripping Direction parameter inside of directional block to be Reverse instead of Forward. Repeat short circuit. How fast does the relay trip? Why?
- Open the input window for current transformer and change the orientation to be -- > Busbar. Repeat the short circuit calculation. Any changes?
6.4 Polygonal and Logic Block

The Polygonal block implements the typical distance protection polygonal characteristics. As input signals each polygonal block is getting calculated values of impedance from polarising block, direction signal from directional block, time delay signal from timer As output this block provides logic block with tripping information. List of all input/output signals is available in technical reference documentation, one copy of input/output signals for Siemens relays is given below.

<table>
<thead>
<tr>
<th>Input Signal</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_A</td>
<td>Phase A - Ground loop resistance</td>
<td>Ohm</td>
</tr>
<tr>
<td>X_A</td>
<td>Phase A - Ground loop inductance</td>
<td>Ohm</td>
</tr>
<tr>
<td>R_B</td>
<td>Phase B - Ground loop resistance</td>
<td>Ohm</td>
</tr>
<tr>
<td>X_B</td>
<td>Phase B - Ground loop inductance</td>
<td>Ohm</td>
</tr>
<tr>
<td>R_C</td>
<td>Phase C - Ground loop resistance</td>
<td>Ohm</td>
</tr>
<tr>
<td>X_C</td>
<td>Phase C - Ground loop inductance</td>
<td>Ohm</td>
</tr>
<tr>
<td>RI_A</td>
<td>Phase A - Phase A loop resistance</td>
<td>Ohm</td>
</tr>
<tr>
<td>XLI_A</td>
<td>Phase A - Phase A loop inductance</td>
<td>Ohm</td>
</tr>
<tr>
<td>RLI_B</td>
<td>Phase B - Phase C loop resistance</td>
<td>Ohm</td>
</tr>
<tr>
<td>XLI_B</td>
<td>Phase B - Phase C loop inductance</td>
<td>Ohm</td>
</tr>
<tr>
<td>RLI_C</td>
<td>Phase C - Phase A loop resistance</td>
<td>Ohm</td>
</tr>
<tr>
<td>XLI_C</td>
<td>Phase C - Phase A loop inductance</td>
<td>Ohm</td>
</tr>
<tr>
<td>fwp/fgnd</td>
<td>Ground forward signal (available when the fault is detected as a forward fault)</td>
<td></td>
</tr>
<tr>
<td>rwp/rngd</td>
<td>Ground reverse signal (available when the fault is detected as a reverse fault)</td>
<td></td>
</tr>
<tr>
<td>fwp/fp/fgph</td>
<td>Phase forward signal (available when the fault is detected as a forward fault)</td>
<td></td>
</tr>
<tr>
<td>rwp/rp/rngph</td>
<td>Phase reverse signal (available when the fault is detected as a reverse fault)</td>
<td></td>
</tr>
<tr>
<td>wloop</td>
<td>ID of the loop from which the fault must be removed</td>
<td></td>
</tr>
<tr>
<td>wup/wtup</td>
<td>Supervising signal</td>
<td>Y/N or sec in the RMS simulation</td>
</tr>
<tr>
<td>wtimer</td>
<td>Timer Signal (used to add an additional delay to the trip time)</td>
<td>Y/N or sec in the RMS simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Signal</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>yout</td>
<td>Tripping signal/time</td>
<td>Y/N or seconds</td>
</tr>
<tr>
<td>y_A</td>
<td>Phase A tripping signal/time</td>
<td>Y/N or seconds</td>
</tr>
<tr>
<td>y_B</td>
<td>Phase B tripping signal/time</td>
<td>Y/N or seconds</td>
</tr>
<tr>
<td>y_C</td>
<td>Phase C tripping signal/time</td>
<td>Y/N or seconds</td>
</tr>
</tbody>
</table>

Figure 6.7: Input, Output signals of Polygonal Block

The Logic/DIP object (RelLogdip class) is used to implement user defined trip logics, dip switch inputs and simplified calculation of analogue signals. It allows defining the block behaviour and usage. Input, output signals and logic inside of this block is completely user definable.

Our task here will be to change relay model so that first zone Z1 only trips for the faults phase to phase. There are many ways to do this but we will select one in order to recapitulate learned from the previous chapter and to learn better how to work with signals and logic block. Here we will learn how to make any kind of changes that may be of help if creating new or changing existing relay models.

- Open the relay type topology in new window.
• Right mouse taster on the new open window → Show Library Object.

• If needed change dimensions of the used page by selecting Drawing Format ... from local icon bar.

• Zoom to the Z1 block and have a look at used input signals. Compare used input signals with those from the figure 6.7. Is the blocking signal input occupied?

• Place new Slot close to the Z1 and name it “NewBlockingLogic”. This block slot of the class RelLog dip will contain one input and one output signal.
Now we have to find one available signal inside of the relay that can help us to recognise type of the fault. We will use here output of the starting block $y_{\text{faulttype}}$. This signal is explained in sub-chapter 6.1. We could also use I_0x3 signal from the Measurement block...

- Release iblock input of the $Z1$ by deleting connection signal to Recloser. This is input 7 of the $Z1$. Signal is marked in figure 6.9.

- Connect output of this new logic slot with input 7 of $Z1$ and input of logic should be connected with the output 2 of the starting block.
Navigate to type of the relay inside of the DataManager, open it and press the SlotUpdate button. Confirm this change by pressing OK.
Figure 6.12: New connection of the slots

- Copy one of the existing TypLogdip blocks inside of the 7SA6 1A (for example Mho Logic) and rename it “NewBlockingLogicType”.

- Select Analogue as Type and None as Breaker Event. Set yInput and yout signals as shown in figure 6.13.

Figure 6.13: New Logic Type

- Inside of the Logic page we have to define how this signals are treated and to define blocking logic.

Figure 6.14: New Logic Type
• Select the new created type for corresponding slot inside of the TypRelay object by double click on the empty field and navigating to logic block type.

![Figure 6.15: Select type for corresponding slot](image)

• Open default relay and press *Slot Update*. Repeat this also for relays R1 and R2.

• Execute 3ph short circuit on the line “L-2-1” and change to R-X diagram of the relay R1. Does the relay trip and how fast?

• Execute now 2phph and single phase to ground fault. How does the relay react?

• Open new logic block in DataManager and present the values of the signals.

![Figure 6.16: Input/Output signals and its values](image)

• If having interest in values of internal variables that we have been using in new logic block, such as yInt1,yInt2,EarthLoop, Just define them as output signals in TypLogdip object. This is very useful by debugging.
Understanding distance relay modelling in *PowerFactory*

PowerFactory files

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RelayDistance_Start.pfd</td>
<td>File used to do the exercise</td>
</tr>
<tr>
<td>RelayDistance_PolaFinish.pfd</td>
<td>Solution of exercise</td>
</tr>
<tr>
<td>RelayDistancePhGrnBlock_Finish.pfd</td>
<td>Solution of exercise</td>
</tr>
</tbody>
</table>