Power System Protection ECE 456

Course Instructor: Prof. Tarlochan Singh Sidhu, Ph.D., P.Eng., C.Eng.

Overcurrent Co-ordination

Contents

- 1. Overcurrent Co-ordination
- 2. Co-ordination examples

Overcurrent Coordination

- ☐ Systematic application of current-actuated protective devices in the electrical power system, which, in response to a fault or overload, will remove only a minimum amount of equipment from service.
- ☐ The coordination study of an electric power system consists of an organized time-current study of all devices in series from the utilization device to the source.
- ☐ This study is a comparison of the time it takes the individual devices to operate when certain levels of normal or abnormal current pass through the protective devices.

Objective of Coordination

- ☐ To determine the characteristics, ratings, and settings of overcurrent protective devices.
 - ☐ To ensure that the minimum unfaulted load is interrupted when the protective devices isolate a fault or overload anywhere in the system.
 - □ At the same time, the devices and settings selected should provide satisfactory protection against overloads on the equipment and interrupt short circuits as rapidly as possible.
- Minimize the equipment damage and process outage costs,
- ☐ To protect personnel from the effects of these failures.

Advantages Of Coordination

Provides data useful for the selection of ☐ instrument transformer ratios protective relay characteristics and settings fuse ratings □ low-voltage circuit breaker ratings, characteristics, and settings. ■ Also provides other information pertinent to the provision of optimum protection and selectivity in coordination of these devices

Coordination Study

- □ Primary Considerations
 - □ Short Circuit currents
 - □ Maximum and minimum momentary (first cycle) short-circuit current
 - □ Maximum and minimum interrupting duty (5 cycle to
 - 2 s) short-circuit current
 - ☐ Maximum and minimum ground-fault current

Coordination Study

- □ Primary Considerations
 - □Coordination time intervals
 - □circuit breaker opening time (5 cycles) 0.08 s
 - □relay over travel 0.10 s
 - ☐ safety factor for CT saturation, setting errors, etc

0.22 s

Coordination Study

☐ Pick-up current

- □ pickup is defined as that minimum current that starts an action.
- □ pickup current of an overcurrent relay is the minimum value of current that will cause the relay to close its contacts.
- □ For an induction disk overcurrent relay, pickup is the minimum current that will cause the disk to start to move and ultimately close its contacts.
- ☐ For solenoid-actuated devices, tap or current settings of these relays usually correspond to pickup current.

Multiples of Tap (Pick up Current)

Time Multiplier Setting(TMS)

- ☐ Time Multiplier Setting (TMS) or Time Dial Setting (TDS)
- Means of adjusting the time taken by the relay to trip once the current exceeds the set value

$$T.M.S. = \frac{T}{T_m}$$

Where,

- T is the required time of operation
- Tm is the time obtained from the relay characteristics curve at TMS 1.0 and using the Plug Setting Multiplier (PSM) equivalent to the maximum fault current

Instantaneous Setting

$$IT = \frac{(1.1)(I_{MAX})(A.F.)}{(TXMR - RATIO)(C.T.RATIO)}$$

Where,

IT is the Instantaneous Trip (Amperes)

1.1 is the Safety Factor

I max is Maximum Fault Current Seen (Amperes)

A.F. is Asymmetric Factor

TXMR Ratio is Transformer Ratio

C.T. Ratio is Current Transformer Ratio

IEEE Standard Inverse Time Characteristic

Reset Time of an Inverse -Time Overcurrent Relay

For
$$0 < M < 1$$
 $t(I)_{reset \ time} = TD\left(\frac{t_r}{M^2 - 1}\right)$ (1)

Pickup Time of an Inverse - Time Overcurrent Relay

For
$$M > 1$$
 $t(I)_{trip\ time} = TD\left(\frac{A}{M^P - 1} + B\right)$ (2)

Where,

t(I) is the reset time in equation (1) and the trip time in equation (2) in seconds

TD is the time dial setting

M is the I_{input}/I_{pickup} (I_{pickup} is the relay current set point) t(r) is the reset time (for M=0)

A, B, p constants to provide selected curve characteristics

Constants & Exponents

Characteristics	Α	В	р	t _r
Moderately Inverse	0.0515	0.1140	0.02000	4.85
Very Inverse	19.61	0.491	2.0000	21.6
Extremely Inverse	28.2	0.1217	2.0000	29.1

Relay Characteristics

Coordination Between Devices

- ☐ Fuses
- Sectionalizers
- Reclosers
- Instantaneous over current
- Inverse time overcurrent relays
- Directional overcurrent relays

Fuses

- Different Types of fuses
- Basic Characteristics
 - □ Consists of one or more silver-wire or ribbon elements called fusible element suspended in an envelope
 - When high currents flows, the fusible element melts almost instantaneously disconnecting the protected element.
 - ☐ The time current characteristics of a fuse has two curves
 - ☐ Minimum melt curve
 - □ Total clearing time

Fuses

Fuse Time Vs Current characteristics

Fuses

- ☐ Selection criteria
 - Melting curves
 - Load carrying capabilities
 - Continuous current
 - □ Hot load pick up
 - Cold load pickup

Sectionalizers & Reclosers

- ☐ Sectionalizers:
 - It cannot interrupt a fault
 - Counts number of time it sees the fault current and opens after a preset number while the circuit is de energized
- □ Reclosers
 - ☐ Limited fault interrupting capability
 - □ Recloses automatically in a programmed sequence

Coordination of protective devices

Fuse - Relay Interval

Fuse-Relay Interval

Breaker-Relay Interval

Relay-Relay Interval

Relay-Relay Interval

Relay Characteristic Selection

Relay Characteristic Selection

Overcurrent Protection Transformer Protection – 2:1:1 Fault Current

- □ A phase-phase fault on one side of transformer produces 2:1:1 distribution on other side
- □ Use an overcurrent element in each phase (cover the 2x phase)
- □ 2Ø & EF relays can be used provided fault current > 4x setting

Overcurrent Protection Transformer Protection – 2:1:1 Fault Current

- □ Istar = Ep-p/2Xt = $\sqrt{3}$ Ep-n/2Xt
- \Box Istar = 0.866 Ep-n/Xt
- \square Istar = 0.866 If3 \varnothing
- □ Idelta = Istar/ $\sqrt{3}$ = If3Ø /2
- ☐ Iline = If3∅

Overcurrent Protection Transformer Protection – 2:1:1 Fault Current

- ☐ Grade HV relay with respect to 2:1:1 for p-p fault
- Not only at max fault level

Overcurrent Protection Instantaneous Protection

- ☐ Fast clearance of faults
 - Ensure good operation factor, If >> Is
- Current setting must be co-ordinated to prevent overtripping
- ☐ Used to provide fast tripping on HV side of transformers
- □ Used on feeders with auto reclose, prevents transient faults becoming permanent
 - AR ensures healthy feeders are re-energised
- □ Consider operation due to DC offset transient overreach

Overcurrent Protection Instantaneous OC on Transformer Feeders

- ☐ Set HV inst 130% IfLV
- Stable for inrush
- No operation for LV fault
- ☐ Fast operation for HV fault
- ☐ Reduces op timesrequired of upstreamrelays

Overcurrent Protection Transient Overreach

☐ Should have ability to ignore DC offset

- ☐ Low overreach allows low Inst setting to be used
 - high operation factor
 - ☐ immunity to LV transformer faults

Overcurrent Protection Earth Fault Protection

- ☐ Earth fault current may be limited
- □ Sensitivity and speed requirements may not be met by overcurrent relays
 - Use dedicated EF protection relays
- ☐ Connect to measure residual (zero sequence) current
 - Can be set to values less than full load current
- ☐ Co-ordinate as for OC elements
 - May not be possible to provide co-ordination with fuses

Overcurrent Protection Earth Fault Relay Connection - 3 Wire System

☐ Combined with OC relays

☐ Economise using 2x OC relays

Overcurrent Protection Earth Fault Relay Connection - 4 Wire System

☐ Independent of neutral current but must use 3

OC relays for phase to neutral faults

Overcurrent Protection Earth Fault Relays Current Setting

- ☐ Solid earth
 - 30% Ifull load adequate

- Resistance earth
 - setting w.r.t earth fault level
 - special considerations for impedance earthing

Overcurrent Protection Sensitive Earth Fault Relays

Overcurrent ProtectionCore Balance CT Connections

- Need to take care with core balance CT and armoured cables
- Sheath acts as earth return path
- Must account for earth current path in connections - insulate cable gland

Contents

- 1. Overcurrent Co-ordination
- 2. Co-ordination examples

Calculate the instantaneous element setting for the relay shown. The asymmetry factor is given as 1.45

$$IT = \frac{(1.1)(18,460)(1.45)}{(4.16/0.48)(300/5)}$$
$$= 56.6 \text{ A}$$

Set IT 56.6 A on the relay

Calculate the relay setting and plot its characteristics

- > Is the CT Ratio acceptable?
- > What kind of relay do we need?
- > What is the tap setting?

Step 1 Fault at F₁

Current drawn by load, /10

$$I_{load} = \frac{5 \times 10^3}{\sqrt{3} \times 13.8} = 210 A$$

CT selected is acceptable as its primary is more than the load current

- Step 2 Use an extremely inverse relay as we are coordinating with a current limiting fuse
- Step 3 Draw Melting time and Total Clearing time fuse characteristics for CLE 100

Melting Current for CLE 100 = 2500 A

Total Clearing Current for CLE 100 = 3210 A

Step 4
$$IT = \frac{(1.1)(3210)}{(400/5)} = 44 A$$
 Use an IT of 50 A

IT in primary of CT = $50 \times 80 = 4000 \text{ A}$

Load current in primary of CT
$$= 210 + 100 = 310A$$

Load current in secondary of CT =
$$310 \times \frac{5}{400} = 3.875 A$$

Fault current in primary of CT =
$$3210 A$$

Fault current in secondary of CT =
$$3210 \times \frac{5}{400} = 40.125 A$$

Step 4 Set TAP = 5

Pickup current in secondary of CT = Relay coil current = 5 A

Pickup current in primary of CT = $5 \times \frac{400}{5} = 400 A$

Step 5 Trip time of relay

$$M = \frac{I_{input}}{I_{pickup}} = \frac{40}{5} = 8$$

$$For \ M > 1$$

$$t(I)_{trip \ time} = TD\left(\frac{A}{M^{P} - 1} + B\right)$$

$$= 1\left(\frac{28.2}{8^{2} - 1} + 0.1217\right) = 0.5693 \approx 0.6 \text{ sec}$$

Calculate the settings for relay on feeder 3 to co-ordinate with relays on feeder 1 and 2.

The feeder relays are as follows:

Feeder 1	Feeder 2
Extremely	Extremely
Inverse	Inverse
Relay	Relay
Tap - 2	Tap - 5
TD - 2	TD - 3
IT - 20	IT - 40

Step 1 Feeder 1

TAP = 2 MEANS THAT

Pickup current in secondary of CT = Relay coil current = 2 A

Pickup current in primary of CT = $2 \times \frac{100}{5} = 40 A$

IT in secondary of CT = Relay coil current = 20 A

IT in primary of CT =
$$20 \times \frac{100}{5} = 400 A$$

Step 2 Feeder 2

TAP = 5 MEANS THAT

Pickup current in secondary of CT = Relay coil current = 5 A

Pickup current in primary of CT = $5 \times \frac{400}{5} = 400 A$

IT in secondary of CT = Relay coil current = 40 A

IT in primary of CT =
$$40 \times \frac{400}{5} = 3200 A$$

Step 3 Plot curve for Relay at feeder 1 with TAP = 2 and TDS = 2

Plot curve for Relay at feeder 2 with TAP = 5 and TDS = 3

Step 4 Feeder 3

Load current in primary of CT = 600 A

Load current in secondary of CT = $600 \times \frac{5}{600} = 5 A$

Fault current in primary of CT = 12000 A

Fault current in secondary of CT = $12000 \times \frac{5}{600} = 100 A$

Step 5 Select pickup setting as 7A, that is TAP = 7

Pickup current in secondary of CT = Relay coil current = 7 A

Pickup current in primary of CT = $7 \times \frac{600}{5} = 840 A$

Step 6 Trip time of relay

$$M = \frac{I_{input}}{I_{pickup}} = \frac{100}{7} = 14.29$$

The required operating time of the feeder 3 relay for this current should be 0.4s+ instantaneous operating time of feeder 2 relay. Assume instantaneous operating time = 0.01s. Therefore required operating time = 0.01+0.4 = 0.41s

Step 7 The TD setting to get an operating time of 0.41s at M=14.29 is

For M > 1

$$0.41 = TD\left(\frac{A}{M^P - 1} + B\right) = TD\left(\frac{28.2}{14.29^2 - 1} + 0.1217\right)$$

$$TD = 1.57$$

Select closet available higher TD

Select the appropriate CT Ratio for the two $I_{3\Phi Max} = 6000 A$ 13.8 kV current transformers A & B shown: N.O. - Select an appropriate relay(s) - Determine settings for the relay(s) , N.O. N.C. N.O. N.C. N.C. N.O. N.O. CLE CLE CLE CLE 65 E 65 E 100 E 100 E

Maximum load on the feeder,
$$I_{load} = \frac{5 \times 10^3}{\sqrt{3} \times 13.8} = 209.18 A \approx 209 A$$

Step 2 SELECT CT RATIO:
$$1.5 \times 209 = 320 A$$

Select a CT Ratio of 400 / 5 A

Step 3
$$IT = \frac{(1.1)(6000)}{(400/5)} = 82.5 A$$
 Use an IT of 90 A

IT in primary of CT = $90 \times 80 = 7200 \text{ A}$

Load current in primary of CT = 209 A

Load current in secondary of CT = $209 \times \frac{5}{400} = 2.6125 A$

Fault current in primary of CT = 6000A

Fault current in secondary of CT = $6000 \times \frac{5}{400} = 75 A$

Step 4 Minimum Tap = 3.0 Select Tap = 7.0

TAP = 7 MEANS THAT

Pickup current in secondary of CT = Relay coil current = 7 A

Pickup current in primary of CT = $7 \times \frac{400}{5} = 560 A$

Step 5 Trip time of relay

$$M = \frac{I_{input}}{I_{pickup}} = \frac{75}{7} = 10.71$$

For
$$M > 1$$

$$t(I)_{trip\ time} = 1 \left(\frac{A}{M^P - 1} + B \right)$$
$$= 1 \left(\frac{28.2}{10.71^2 - 1} + 0.1217 \right) = 0.3697 \approx 0.4 \text{ sec}$$

Select the appropriate ratio for the current transformers shown and

- Select an appropriate relay
- Determine settings for the relay

51 Tap 5

Time Dial - 1.0

Use Very Inverse Relay

RELAY AT 'B'

Step 1 TAP = 5 MEANS THAT

Pickup current in secondary of CT = Relay coil current = 5 A

Pickup current in primary of CT =
$$5 \times \frac{1200}{5} = 1200 A$$

RELAY AT 'A'

Step 2 Current on 13.8 kV side of Transformer,
$$I = \frac{3.75 \times 10^3}{\sqrt{3} \times 13.8} = 157 A$$

Step 3 SELECT CT RATIO :
$$1.5 \times 157 = 236 A$$

Select a CT Ratio of 300 / 5

Step 4 Load current in primary of CT = 157 A

Load current in secondary of CT =
$$157 \times \frac{5}{300} = 2.6167 A$$

Fault current in primary of CT = 11,109
$$\times \frac{2.4}{13.8}$$
 = 1932 A

Fault current in secondary of CT =
$$1932 \times \frac{5}{300} = 32.2 A$$

Pickup current in secondary of CT = Relay coil current = 3 A

Pickup current in primary of CT =
$$3 \times \frac{300}{5} = 180 A$$

Step 6
$$IT = \frac{(1.1)(11,109)(1.45)}{(13.8/2.4)(300/5)} = 51.359 A$$
 Use an IT of 60 A

IT in primary of CT = $60 \times 60 = 3600 \text{ A}$

Step 7 Required operating time of RA for fault current of 1932A (HV)

Top of RB for 11,109A =
$$1\left(\frac{28.2}{(11109/1200)^2 - 1} + 0.1217\right)$$

= $0.4546 \approx 0.46 \text{ sec}$

Therefore t_{req} of relay RA = 0.46+0.4 = 0.86s

Step 8 Time dial setting of relay RA is

$$M = \frac{I_{input}}{I_{pickup}} = \frac{32.2}{3} = 10.73$$

$$0.86 = TD \left(\frac{28.2}{10.73^2 - 1} + 0.1217 \right)$$

$$TD = 2.3$$

The setting of relay RA is

Pickup = 3A

Time dial = 2.3

Instantaneous = 60A

Select and apply the appropriate relay for the circuit.

Step 1 Maximum load on the feeder,
$$I_{load} = \frac{2000}{\sqrt{3} \times 13.8} = 84 A$$

Step 2 SELECT CT RATIO :
$$1.5 \times 84 = 126 A$$

Select a CT Ratio of 200 / 5 A

Step 3 Load current in primary of CT = 84 A

Load current in secondary of CT =
$$84 \times \frac{5}{200} = 2.1 A$$

Fault current in primary of CT = 6000 A

Fault current in secondary of CT =
$$6000 \times \frac{5}{200} = 150 A$$

Step 4
$$IT = \frac{(1.1)(1200)}{(200/5)} = 33 A$$
 Use an IT of 40A

Where fuse clearing current = 1200A

IT in primary of CT = $40 \times 200/5 = 1600 \text{ A}$

Step 5 Select Tap = 5.0

TAP = 5 MEANS THAT

Pickup current in secondary of CT = Relay coil current = 5 A

Pickup current in primary of CT =
$$5 \times \frac{200}{5} = 200 A$$

Step 6 Trip time of relay

$$M = \frac{I_{input}}{I_{pickup}} = \frac{150}{5} = 30$$

For
$$M > 1$$

$$t(I)_{trip\ time} = 1 \left(\frac{A}{M^P - 1} + B \right) = 1 \left(\frac{28.2}{30^2 - 1} + 0.1217 \right)$$
$$= 0.1530 \approx 0.2 \text{ sec}$$

Relay coordination on radial feeders

Use Extremely Inverse Relay Characteristics

Line Parameters		
Bus		Impedance
From	То	Ohms Ω
1	2	0.70
2	3	1.00
3	4	2.00
4	5	1.00

Select Base Capacity = 25 MVA

Select Base Voltage on Bus 1 = 13.8 kV

Base Current,
$$I_b = \frac{25 \times 1000}{\sqrt{3} \times 13.8} = 1046A$$

Base Impedance,

$$Z_b = \frac{(Base\ Voltage\ in\ kV)^2}{Base\ Capacity\ in\ MVA}$$
$$= \frac{(13.8)^2}{25}$$
$$= 7.618\ \Omega$$

Line Parameters				
Ві	us	Impedance		
From	From To			
1	2	0.0919		
2	3	0.1313		
3	4	0.2625		
4	5	0.1313		

Maximum short circuit current - Fault on Source Bus = $\frac{250}{25}$ = 10.0 p.u.

Source Impedance = $\frac{1}{10}$ = 0.1 p.u

Minimum short circuit current - Fault on Source Bus = $\frac{200}{25}$ = 8.0 p.u.

Source Impedance = $\frac{1}{8}$ = 0.125 *p.u.*

Transformer Impedance on 15 MVA and 13.8 kV base = 0.08

Transformer Impedance on 25 MVA and 13.8 kV base

$$Z_t = 0.08 \times \frac{25 \times (13.8)^2}{15 \times (13.8)^2} = 0.1333 \ p.u.$$

Selection Of CT Ratios and Current Settings					
Relay	Maximum	CT Ratio	Relay Set	Current ting	
Location Bus	Load Current (A)	Selected	Percent	Primary Current (A)	
1	500	800/5	75	600	
2	350	500/5	100	500	
3	150	200/5	100	200	
4	50	100/5	75	75	
5	50	100/5	75	75	

	Fault Current Calculations					
		Total Impeda p.	ance to Fault u.	Fault Cu	ırrent (A)	
	Location of Fault Bus	Maximum (One Transformer in Circuit)	Minimum (Two transformer s in circuit)	Minimum (One Transformer in circuit)	Maximum (Two Transformer s in circuit)	
	1	0.2583	0.1667	4049	6274	
	2	0.3502	0.2586	2986	4045	
	3	0.4815	0.3899	2172	2683	
	4	0.7440	0.6524	1406	1603	
© 2	5 005. T.S. Sidhu	0.8753	0.7837	1195	1335	

Choosing relay 5 parameters

	Coordination parameters – Fault at Bus 5		
Relay at Bus	Current in Multiples of Relay Setting	TMS	Relay Operating Time
5	17.800	1	0.21

Choosing relay 4 parameters

	Coordination parameters – Fault at Bus 5			
Relay at Bus	Current in Multiples of Relay Setting	TMS	Relay Operating Time	
5	17.800	1	0.21	
4	17.800	3	0.63	

Checking relay 4 parameters

	Coordination parameters – Fault at Bus 4			
Current	Current in Multiples of Relay Setting	TMS	Relay Operating Time	
1603	21.373	3	0.55	
1406	18.75	3	0.6	

Choosing relay 3 parameters

	Coordination parameters – Fault at Bus			
Relay at Bus	Current in Multiples of Relay Setting	TMS	Relay Operating Time	
4	(1603/75) 21.373	3	0.55	
3	(1603/200)8.015	1.7	0.93	

Checking relay 3 parameters

	Coordination pa	rameters -	- Fault at Bus 3
Current	Current in Multiples of Relay Setting	TMS	Relay Operating Time
2683	13.415	1.7	0.48
2172	10.86	1.7	0.62

Choosing relay 2 parameters

	Coordination pa	rameters -	Fault at Bus 3
Relay at Bus	Current in Multiples of Relay Setting	TMS	Relay Operating Time
3	(2683/200) 13.415	1.7	0.48
2	(2683/500) 5.366	0.75	0.85

Checking relay 2 parameters

	Coordination pa	rameters -	Fault at Bus 2
Current	Current in Multiples of Relay Setting	TMS	Relay Operating Time
4045	8.09	0.75	0.42
2986	5.97	0.75	0.69

Choosing relay 1 parameters

	Coordination pa	Fault at Bus 2	
Relay at Bus	Current in Multiples of Relay Setting	TMS	Relay Operating Time
2	(4045/500) 8.09	0.75	0.42
1	(4045/600) 6.74	1.1	0.82

Checking relay 1 parameters

	Coordination pa	rameters -	Fault at Bus 1
Current	Current in Multiples of Relay Setting	TMS	Relay Operating Time
6274	10.46	1.1	0.41
4049	6.75	1.1	0.82

