Current Transformers (CT)

Introduction to Current Transformers

Devices used to measure and transform high currents to lower, manageable values.

Purpose:

Enable safe monitoring and protection of electrical circuits.

Importance

- Ensure accurate current measurement in power systems.
- Protect equipment by enabling relay operations.
- Safeguard personnel by isolating highvoltage circuits.

Working Principle

- Operates on Faraday's Law of Electromagnetic Induction.
- Secondary current ratio is standardized for instruments.
- Converts high primary current to a proportional low secondary current

Key Components of CT

Core:

End-to-end solutions for various projects.

Primary Winding:

Connected to the high-current source.

Secondary Winding:

Connected to measuring instruments or relays.

Types of Current Transformers

1. Bar-Type CT:

Directly fitted on busbars or cables.

2. Window-Type CT

Ensuring system reliability.

3. Wound-Type CT:

Separate primary and secondary windings.

CT Ratios

- Represents the proportion of primary to secondary current.
- **Example:** A CT with a 100:5 ratio reduces 100A primary current to 5A secondary current.

Applications of Current Transformers

- Accurate current measurement for meters.
- Overcurrent detection and tripping relays.

Monitor and optimize power usage.

Accuracy Classes

Of Defines the CT's precision level.

- → Common Classes:
- O.2, O.5: High accuracy for metering.
- **5P, 10P:** Used in protection applications.

