Skip to main content

Course Title & Dates

  • Config and testing of the generator, transformer, line, and motor protection functions
  • 4 days

Trainer Profile

Registration

email: saeed61850@gmail.com

Tentative Course Schedule

Day 1
  TIME 

TRAINING SCHEDULE & TOPICS

9.00am – 10.30amABB relays, PCM 600 installation, Connectivity pack installation, Hardware configuration, Application configuration, Signal matrix Parameter setting, IED read and write IED online monitoring and signal monitoring Disturbance, and event viewer
10.30 am – 10.45 amTEA BREAK
10.45am –1.00pm  SIPROTEC 5 relay families and applications DIGSI 5 and device driver installation SIPROTEC 5 configurator Relay configuration
1.00pm – 2.00pmLUNCH
2.00pm –3.30pm    SIPROTEC 4 Relay families DIGSI 4 installation Masking I/O CFC Fault Recorder
3.30pm – 3.45pmTEA BREAK
3.45pm – 5.00pm    MiCOM relays range, naming, and application Easergy Software Configuration and PSL Event and disturbance recorder

Day 2

  TIME 

TRAINING SCHEDULE & TOPICS

9.00am – 10.30am    OMICRON CMC Test universe softwareAMT105  AMPro software signal view, impedance view, vector view different types of test modulesRIO, XRIO, and PTL
10.30 am10.45 amTEA BREAK
10.45am – 1.00pm        Principle of Differential Protection87G Generator Differential Protection87T Trans. Differential Protection87M Motor Differential Protection87L Line Differential Protection
1.00pm – 2.00pmLUNCH
 2.00pm – 3.30pm    Testing of the Differential protection function (87G, 87T, 87M, 87L) Operating CharacteristicDifferential ConfigurationDifferential trip time-harmonic
3.30pm – 3.45pmTEA BREAK
3.45pm – 5.00pm    81O Over frequency Protection81U Under frequency Protection59 Overvoltage Protection27 Under voltage ProtectionTesting of the Over/under frequency (81O/ 81U)Testing of the Over/Under voltage (59, 27)
contact us to reserve your seat

Day 3

  TIME 
TRAINING SCHEDULE & TOPICS

    9.00am – 10.30am    50/51 Overcurrent protection50N/51N earth fault protection 67/67N Directional/ directional earth fault protectionRelay coordination
10.30 am – 10.45 amTEA BREAK
    10.45am – 1.00pm        Overcurrent test moduleOvercurrent RIO block settings of the Overcurrent test module testing of the Overcurrent and Directional Overcurrent Functions (67, 67N, 50, 51, 50N, 51N)
1.00pm – 2.00pmLUNCH
2.00pm – 3.30pm    46 Negative Phase Sequence Protection51V Voltage-Dependent O/C Protection49S Stator Overload Protection49R Overload Protection48 Motor starting time supervision51L lock rotor
3.30pm – 3.45pmTEA BREAK
 3.45pm – 5.00pm    Testing of the Negative Phase Sequence ProtectionTesting of the ANSI 51V Voltage-Dependent O/C ProtectionTesting of the ANSI 49 Overload Protection


Day 4

  TIME 
TRAINING SCHEDULE & TOPICS

9.00am – 10.30am  Distance protection line simulation in PSCADTesting of the fault location function
10.30 am – 10.45 amTEA BREAK
10.45am – 1.00pm      21 Line distance protection40G Field Failure Protection21G Generator Under impedance Protection78 Pole Slipping Protection
1.00pm – 2.00pmLUNCH
 2.00pm – 3.30pm    Distance RIO block shot Test, Check Test, Search Test, Z\t Diagram, Zone SettingsTesting of the Distance function (21)Testing of the 40G Field Failure Protection
3.30pm – 3.45pmTEA BREAK
 3.45pm – 5.00pm    64S Generator, 95% &100% Stator Earth Fault Protection, 51/27 Generator, Dead Machine Protection, 24G Generator, Over flux Protection, 47G Generator, Fuse Failure Supervision, 32R Generator, Reverse Power Protection

Relay protection against the high current was the earliest relay protection mechanism to develop. From this basic method, the graded overcurrent relay protection system, discriminative short circuit protection, has been formulated. This should not be mixed with ‘overload’ relay protection, which typically utilizes relays that function in a time-related to some degree to the thermal capacity of the equipment to be protected. On the contrary, overcurrent relay protection is completely directed to the clearance of short circuits, even though with the settings typically assumed some measure of overload relay protection may be obtained.

Types of Overcurrent Relay

  • Instantaneous Overc1r11e1nt Relay
  • Inverse Time Overcurrent Relay (IDMT Relay)
  • Directional overcurrent relay
  • 1Mixed IDMT and high set instantaneous

Instantaneously overcurrent relay operates when the current exceeds its Pickup value. The operation of this relay is based on the current magnitude and it is without any time delay.


Instantaneous Overcurrent Relay

STANDARD IDMT OVERCURRENT PROTECTION RELAYS

The current/time-tripping characteristics of IDMT protection relays may need to be changed according to the functioning time needed and the characteristics of other relay protection elements used in the electrical network0.10 For these needs, IEC 60255 determined the number of standard characteristics. These are:

  • Standard Inverse characteristic (SI)
  • Very Inverse characteristic (VI)
  • Extremely Inverse characteristic (EI)
  • Definite Time characteristic (DT)
inverse time relay coordination
Time Delay between Relay

MIXED IDMT AND HIGH SET INSTANTANEOUS OVERCURRENT PROTECTION RELAYS

A high-set instantaneous device can be utilized where the source impedance is small in comparison with the protected circuit impedance. This allows a decrease in the operating time at high short circuit levels possible. It also enhances the overall electrical system grading by allowing the ‘discriminating protection curves’ behind the high set instantaneous device to be reduced. One of the benefits of high-set instantaneous devices is to decrease the tripping time of the circuit protection. If the source impedance stays constant, it is then feasible to accomplish high-speed relay protection over a large part of the protected circuit. The quick short circuit clearance time helps to decrease damage at the short circuit location. Grading with the protection relay directly behind the protection relay, which has the instantaneous devices enabled, is accomplished at the current setting of the instantaneous devices and not at the maximum short circuit level.

Leave a comment on this post, we will send you the “Overcurrent Protection Fundamentals. pdf ” for FREE

DIRECTIONAL OVERCURRENT RELAY

When a short circuit current can go in both directions through the protection relay location, it may be required to make the response of the protection relay directional by the initiation of a directional control device. The device is provided by the use of extra voltage inputs to the protection relay. There are many ways for an appropriate connection of voltage and current signals. The different connections depend on the phase angle, at a unity system power factor, by which the current and voltage used in the protection relay are displaced

directional overcurrent protection basic principal
directional overcurrent protection

ABB Overcurrent Relay
AREVA Overcurrent Relay

Leave a comment on this post, we will send you the “Overcurrent Protection Fundamentals. pdf ” for FREE